

E-906/SeaQuest: Experimental Management Group

Paul E. Reimer
Argonne National Laboratory
9 August 2013

- I. Physics Overview
- II. Review of 2012 Commissioning
- III. Beamline progress
- IV. Spectrometer Upgrades
- V. Computing and Analysis

SeaQuest: the quark sea in the nucleon and nuclei

Drell-Yan gives access to sea quark distributions

- Measured cross section is a convolution of beam and target parton distributions
- Proton Beam
 - Target antiquarks and beam

$$\frac{d^2\sigma}{dx_{\rm b}dx_{\rm t}} = \frac{4\pi\alpha^2}{x_{\rm b}x_{\rm t}s} \sum_{q\in\{u,d,s,\dots\}} e_q^2 \left[\bar{q}_{\rm t}\left(x_{\rm t}\right)q_{\rm b}\left(x_{\rm b}\right)\right]$$

Acceptance limited

■ u-quark dominance

 $(2/3)^2$ vs. $(1/3)^2$ × (2 quarks vs. 1 quark)

10

10

Commissioning Run 2012

- Brief 2-month run after many interesting diversions
- Commissioning for both Spectrometer and Accelerator
- Accelerator:
 - Large intensity variations within spill
 - vacuum in berm pipe
- Spectrometer:
 - DAQ TDC firmware not quite ready
 - Lacked hardware zero suppression (zero suppression in front-end CPU)
 - Large dead times, especially with large events
 - PMTs at St. 1 need better rate capabilities
 - Interim St. 1 and 3- Tracking

Commissioning Run

- Average intensity normal, measured by beam line instrumentation
- Independent 10kHz pulsed DAQ read out raw hodoscope rates
- Bins are integrated counts over 100µs (≈5000 RF buckets)
- Large variation in Instantaneous intensity, duty factor very low.
- Periodic structure—Phase locked to AC 60 Hz

Conclusion:

The MI extraction was also being commissioned.

AD believes that these problems have been addressed.

Commissioning Run Data

- "Splat Block"
 - A card was developed to keep a running average of the multiplicity over a 160 ns window (8 RF buckets).
 - If average multiplicity above threshold, raises a trigger veto
- Analysis
 - Noisy data was hard place to start
 - Developed and tuned track finding and fitting under "worst case" beam conditions.
 - Develop internal alignment procedures
- Hardware
 - Pointed to areas in need of improvement

Shutdown Activities

Targets:

- iFIX on Target Computer (Windows 7)
- Spare flasks under construction

TDC Micro Code

- Write
- Full system test with beam

St. 4:

Service beam

Beam Cherenkov

- hardware
- readout

- Magnets:
- **Neutron Wall**
- Power test in March

- New PMT Bases
- Clip lines on PMT (shorter pulses—all stations)
- Tracking Chamber Repair install
- New Chamber

St. 2:

New PMT Bases

St. 3:

- Reinstall St 3+
- Complete and install St. 3-

DAQ:

- Integrate new TDC
- **Cherenkov Setup**

Shutdown Activities

Targets:

- iFIX on Target Computer (Windows 7)
- Spare flasks under construction

TDC Micro Code

- Write
- Full system test with beam

Service beam

Beam Cherenkov

Magnets:

hardware

readout

New PMT Bases

Clip lines on PMT (shorter pulses—all stations)

- Tracking Chamber Repair install
- New Chamber

New PMT Bases

St. 3:

- Reinstall St 3+
- Complete and install St. 3-

DAQ:

- Integrate new TDC
- **Cherenkov Setup**

Paul E. Reimer, SeaQuest/E906 EMG

Power test in March

Beam Intensity Monitor

N₂ Cerenkov Counter upstream of the targets. Three functions:

- Instantaneous Luminosity—Event readout
- Duty Factor
- Spill readout
 - At end of spill, output entire spill record + total intensity, intensity while DAQ dead, record of splat block. Feedback for MCC (used to produce FFT)
- "Splat block"
 - Compute circular sum of beam intensity
 - Inhibit triggers if sum>threshold

Readout

Digitization by a QIE-10

Beam Testing

- Would like to have fully functional readout by time beam arrives at NM4
- FTBF parasitic test—requires MCC to tune beam to FTBF for maximum duty factor—likely needs more than 10-50 rf cycles full.

Reduce Random hits at St. 1

Wall is done

Br BLOCK

"B" BLOCK

Thanks to PPD/John Vorin

St. 1 & 2 Photomultiplier bases

- Drop in performance in high intensity & rate hodoscopes
- Destabilization of voltage diff. over latter dynode stages
- Solution: New PMT base
 - Higher supply current draw
 - Voltage stabilization features
- Results:
 - 3x rate improvement
 - 2x amplitude improvement
 - Able to bypass amplifiers in DAQ
- Status:
 - all bases installed
 - gain matching w/cosmic
- Clip lines
 - Installed on all bases (St. 1-4)
 - reduce pulse width (as expense of some signal)

Old St 1 Tracking Repair

- Third of the D1V plane was dead.
- Two identical sense planes; D1V and D1Vp. No half drift cell shift between them.
- Two wires of D1X and one wire of D1U accidentally broke during Run I
- During repair accidental overpressure of D1X gas windows caused rip and broken wires.
- All items repaired
 - D1V installed,
 - D1X to be installed next week
 - followed by D1U

St1 Hit Distributions (run 2173)

Thanks to PPD/Wanda Newby

Tracking St. 3+ Cross Talk

Signal 36 mV Crosstalk4 mV (10%), later by 20 ns

- Timing and simulation showed that cross talk was from a reflection due to impedance mismatch at end of wires
- Simplest solution was to move the HV bus on the chamber
- Verified with test-chamber and source at Tokyo Tech
- Modifications complete on St. 3+ at SeaQuest Hall

Tracking station 3-

Construction work

- Duplicate of St 3+
- Assembled at Fermilab Lab6.
- All the amplifier card and noise-shielding parts were attached.

Status

- HV is on, and currents are very low and stable.
- Transported to the SeaQuest hall in early July.
- Installed to the spectrometer in a week.

Thanks to PPD/Wanda Newby

TDC Microcode Upgrade

Background:

- SeaQuest uses a custom FPGA-based VME module for all DAQ—Academia Sinica
- Modules may be programmed in many ways. SeaQuest using them as a multi-hit TDC
- Microcode for commissioning run
 - off board 0-suppression (extreme dead times)
 - 2.5 ns resolution (Not great, but OK for required resolution)

The development and production test of Run2-TDC were done at April.

The Run2-TDCs for Hodoscopes and Proportional tubes have been implemented in E906DAQ system and tested.

Run1-TDC v.s. Run2-TDC		
	Run1-TDC	Run2-TDC
Zero Suppression	None	Naturally applied
Time Resolution	2.5 ns	~0.44 ns
Minimum width of signal	10 ns	4 ns
Maximum number of hits in 64 ns	6 hits	4 hits
Width of accepted window	Adjustable: 320 ns or 640 ns	Adjustable: 4 – 2048 ns in a 4-ns step
Edge detection	Both Edge	Adjustable: leading edge only or both edges.
Maximum number of hits per trigger	Record all hits within Tine window	Adjustable: 32-1024
Maximum numbers of events per IRQ	1	Adjustable: 1-32
Scalar buffer to record # of hits each channel	None	8
Multiple Hits Elimination	None	Adjustable: Disable time window (16 -272)

E906 Run 2 Trigger

New Trigger Hardware Setup:

- 4 new v1495s make 'Level 0'.
- Level 0 records all hits with internal TDC.
- Level 1 and 2 contain all trigger logic.

Other changes:

- New trigger for 'same-side' dimuons (both muons in the same half of the spectrometer). Better acceptance for angular analyses.
- Bend-plane meantimers removed.
- Automation of firmware upload chain; less prone to human errors, better documentation of changes to trigger.

Comprehensive pulser test:

- Test input handling, TDC hit recording, and logic of trigger firmware.
- Goal: Done by August 22nd.

DAQ

Background:

- CODA system written and maintained by JLab
- 2 separate systems
 - Event DAQ (or Main DAQ)
 - Scaler DAQ for beam monitoring

Main DAQ

New event format from TDC micro code

Scaler DAQ (feedback to Accelerator on duty factor)

- Added additional scalers (not a significant change)
- Readout of Cherenkov Beam Intensity Monitor

All DAQ activities over a private (192.168.xxx.) network
Raw Data Storage on Fermilab STKEN Enstore & RAID in counting house
Processed data on MySQL server at UIUC & counting house

Data Storage and Processing

- Depends significantly on beam quality
- w/excellent beam quality, E866 give lower limit of 5 TB raw data
- Currently we have approx. 40 TB of data space at SeaQuest.

Run I (03/07/12—04/30/12)	Run II (two years)	
1TB of raw data	→ 12 TB of raw data→ stored on dCache and local RAID	
→8TB of MySQL data productions →file size dominated by hit information	size ++ Higher event rate size more compact format → 10 TB of MySQL data → storage on FNAL and UIUC servers	
→real-time decoding	size ++ Higher event rate size Store less Information real-time decoding online tracking on sample full reconstruction on Grid	

Paul E. Reimer, SeaQuest/E906 EMG

18

Online Visualization

Server:

manages MySQL server communication in a a robust way

Client:

- multithreaded web application, highly modular and extensible backend
- modern interactive web application using the latest technologies: HTML5, CSS3, Javascript/ES5

Event Display

New browser-based event display software developed

Offline Software Status

- Geometry and alignment from Run I well understood. Alignment procedure established
- Chamber calibrations from Run I complete

Event reconstruction (track finding and and fitting) being optimized.

- Currently ~5 events/CPU second.
- Suitable for quick on-line feedback (what did the last spill look like?)
- Dominated by combinatorics (duty factor)
- Offline—grid computing

Commissioning Plans—same plans as March-April 2012

1 During Vacuum Repair

- A. Study beam duty factor with test beam, Work with MCR to improve diagnostics
- B. Operational Readiness Clearance (ORC)
 - Will require engineering support for cross check of engineering notes
- C. Extended DAQ tests

- Cosmic, source and pulse injection triggers
- D. Geometry and alignment checks
 - Measure as built
- E. Hodoscopes
 - Cross Check Hodoscope and Trigger Mapping (once again)

- Gain match tubes (with cosmics)
- H. Trigger
 - i. Sync timing of all triggers (v1495, NIM)—final timing with beam

Commissioning Plans with Beam

- Beam tuning
 - 1 booster batch and minimum intensity
- Spectrometer Commissioning
 - Follow same plan as March 2012
- Trigger studies: minimum intensity at highest duty factor
 - 6 booster batches of 84 bunches and 1 turn (How many protons would this be?)
 - 2012 run was 6 batches of 39 bunches and 1 turn to give 1×10¹² protons/spill
- Special runs:
 - dedicated runs at high duty factor and lower intensity when FTBF is not running by changing the split to put 90% of beam on main beam dump—study rate effects
- As we validate trigger and detector performance, slowly increase beam intensity with goal of 1×10¹³ protons/spill
- Foil Activation/Beam Intensity calibration
 - When?
 - Worry about access/activation of target area
 - Need for stable well tuned beam
 - Poorly done in commissioning run

Run plan specific

- A. Beam Cherenkov
 - PMT signal and voltage
 - 3 readout modes
- B. DAQ commissioning in parallel with all work
 - I would be ecstatic if it worked perfectly, but. . .
 - Priority determined by Commissioning Team and Spokespersons
- C. Scintillator Gain Checkout
 - Hodoscopes as function of voltage or threshold (need CAMAC controller)
 - efficiency calculation using well-tested hodoscope tracking, requiring KMAG off and so decoupled from wire-chamber commissioning determine thresholds to optimize efficiency
 - re-gain-match PMT (to get rid of NIM amplifiers)?
 - monitor efficiency (poor man's gain-monitoring)
- D. Scintillator Timing
 - In parallel with gain, but must check after gain measurement
- E. NIM trigger timing (in parallel with FPGA trigger timing)
- F. FPGA Trigger timing (in parallel with NIM trigger timing)
 - Both need reasonably stable scintillator timing
- G. Wire Chambers (in parallel with Hodoscopes as much as possible)

Josh Rubin: Czar of "I wish we had taken xxx data in commissioning run"

Major Concerns

- 1. Working Beam Line
- 2. Extracted Beam Duty Factor
- 3. Trigger Selectivity—heavily dependent on (2) duty factor
- 4. Improved offline reconstruction speed—dependent on (3) and (2)
- 5. Effort: Appears good as long as senior postdocs do no leave to quickly—the 3 year delay have been costly to them and our 12 graduate students

After six months of running— $\frac{1}{3}$ commissioning and $\frac{2}{3}$ production data at 2×10^{12} protons/spill—SeaQuest will have scientifically interesting results representing an improvement on the E866 Statistics at $x\approx0.3$ and confirm decrease in dbar/ubar at large x.

